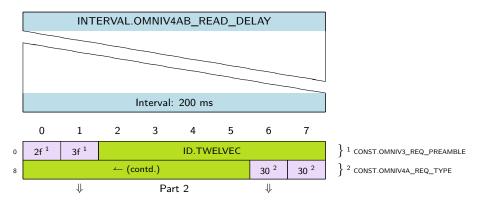


EKM Protocol Interface Control Document

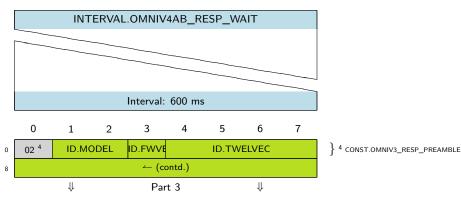
Retrieve all measurements from the EKM OmniMeter v4 A and B requests. [Protocol Revision B] - OMNIV4AB_READ_REVB - 26006

Phillip Dillinger <pdillinger@ekmmetering.com>

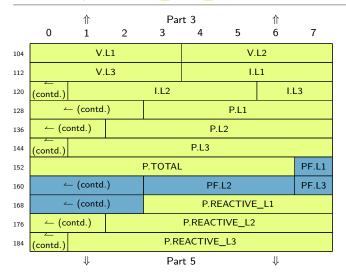
01 May 2015

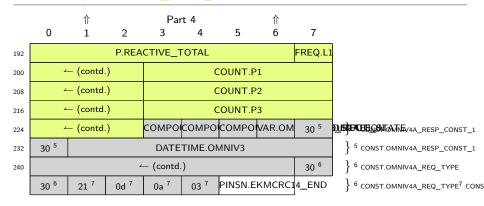

Protocol Document Description

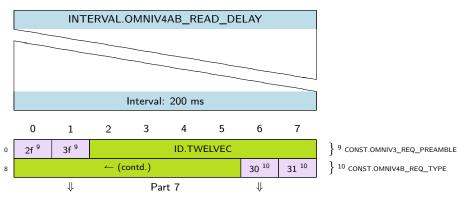
This document describes the EKM OMNIV4AB_READ_REVB [26006] protocol, which is titled "Retrieve all measurements from the EKM OmniMeter v4 A and B requests. [Protocol Revision B]" This document consists of three sections:

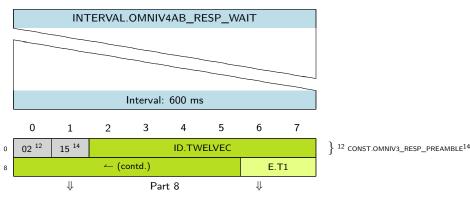

- Protocol Map
- Protocol Fields
- ► Schema

Protocol Map The protocol map shows the protocol as a diagram. Each field name in the protocol map is a link to corresponding detailed information pages in the Protocol Fields section. The protocol map is color-coded, and the key to these color codes follows. The protocol map is arranged horizontally by words and vertically by groups of an equal number of words. Each word corresponds to a character transmitted over the serial interface. Some fields span vertical groups of words, and these fields are linked together by arrows and "(contd.)" text. The protocol map is read left-to-right and up-to-down, and may be split across multiple pages.


Protocol Fields The protocol fields section describes each protocol field in detail, and contains information about these fields as returned by the meter in the "raw" format, to the information about these fields as transmitted to the data collection servers, and to the information displayed to users via the web interface. The protocol field documentation provides an overall view of this protocol's data as collected and as viewed. Schema The schema section provides schema snippets as generated by the datamodel. These schema snippets are provided as reference information to developers using the data as stored on the data collection servers. When data is retrieved from the data collection servers directly, these schema snippets correspond directly to the data format and characteristics which are to be expected. This schema information is used to auto-generate parts of the device firmware and data collection server software, and as such this schema information is the normative reference of protocol operations and of the data collected.




		↑		Pa	↑						
	0	1	2	3	4	5	6	7			
16	E.TOTAL										
24	E.REACTIVE_TOTAL										
32	E.UPSTREAM_TOTAL										
40	E.L1										
48	E.L2										
56	E.L3										
64	E.UPSTREAM_L1										
72	E.UPSTREAM_L2										
80		E.UPSTREAM_L3									
88		E.SINCE_RESET									
96	E.UPSTREAM_SINCE_RESET										
		\Downarrow		Pa	rt 4		₩				



		↑		Part 7						
	0	1	2	3	4	5	6	7		
16				E.T2						
24			← (c	ontd.)			E.T3			
32			← (c	ontd.)			E.T4			
40			← (c	ontd.)			E.UPSTREAM_T1			
48		E.UPSTI	REAM_T2							
56	← (contd.) E.UPSTREAM_ ⁻									
64			E.UPSTREAM_T4							
72	← (contd.)							V.OMNIV3		
80	← (contd.) V.OMNIV3							V.OMNIV3		
88	← (contd.) I.OMNIV3							I.OMNIV3		
96		← (c	ontd.)			I.OMNIV3				
		₩		Pa	rt 9		₩			

		↑		Par			↑		
	0	1	2	3	4	5	6	7	
104	(contd.)			F	P.OMNIV	3			
112			F	OMNIV	3			P.OMNIN	/3
120			← (co	ontd.)			P.OM	1NIV3	
128		2	— (contd.)		PF.OMNIV3			
136	(contd.)		PF.ON	INIV3		PF.OMNIV3			
144	∠_ (contd.)				P.MAX				
152	(contd.) CHOICE. RATIO.P1					RATIO.P2			
160	← (contd.) RATIO.P3				0.P3		RATI	0.CT	
168	← (contd.)		CHOICE. RATIO.C			0.CF 30 ¹⁵		30 ¹⁵	¹⁵ CONST.OMNIV4B_RESP_CONST_1
176	30 ¹⁵	30 ¹⁵	30 ¹⁵	30 ¹⁵	30 ¹⁵	30 ¹⁵	30 ¹⁵	30 ¹⁵	¹⁵ CONST.OMNIV4B_RESP_CONST_1
184	30 ¹⁵	30 ¹⁶	30 ¹⁶	30 ¹⁶	30 ¹⁶	30 16	30 ¹⁶	30 16	¹⁵ CONST.OMNIV4B_RESP_CONST_1 ¹⁰
	↓ Part 10						\Downarrow		

		↑ Part 9					↑		
	0	1	2	3	4	5	6	7	
192	30 ¹⁶	30 ¹⁶	30 ¹⁶	30 17	30 ¹⁷	30 17	30 17	30 17	¹⁶ CONST.OMNIV4B_RESP_CONST_2 ¹⁷
200	30 17	30 17	30 17	30 17	30 17	30 ¹⁸	30 ¹⁸	30 ¹⁸	¹⁷ CONST.OMNIV4B_RESP_CONST_3 ¹⁸
208	30 ¹⁸	30 ¹⁸	30 ¹⁸	30 ¹⁸	30 ¹⁸	30 ¹⁸	30 ¹⁸	30 ¹⁹	18 CONST.OMNIV4B_RESP_CONST_4 ¹⁹
216	30 ¹⁹	30 ¹⁹	30 ¹⁹	30 ¹⁹	30 ¹⁹	30 ¹⁹	30 ¹⁹	30 ¹⁹	<pre> 19 CONST.OMNIV4B_RESP_CONST_5 </pre>
224	30 ¹⁹	30 ²⁰	30 ²⁰	30 ²⁰	30 ²⁰	30 ²⁰	30 ²⁰	DATETI	ME.)⊖₩Nobowst.omniv4b_resp_const_5 ²⁰
232		-							
240			← (c	21 CONST.OMNIV4B_REQ_TYPE					
	21 22	0d 22	0a ²²	22 CONST.OMNIV3_RESP_POSTAMBLE					
		INTE	RVAL.C						

ekn metering the.

Protocol Field I EKM OmniMeter v4 delay between reads -INTERVAL.OMNIV4AB_READ_DELAY - Field ID 27076

EKM OmniMeter v4 delay between reads -INTERVAL.OMNIV4AB_READ_DELAY - Field ID 27076

Technical Description of EKM OmniMeter v4 delay between reads

- ▶ Type of field EKM OmniMeter v4 delay between reads is a An interval of time (Kind "INTERVAL")
- Direction of field This field does not read from or write to the meter. [NONE]
- Format of field A delay of length 200. [DELAY]

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above request preamble - CONST.OMNIV3_REQ_PREAMBLE - Field ID 26944

EKM OmniMeter v3 and above request preamble -CONST.OMNIV3_REQ_PREAMBLE - Field ID 26944

Technical Description of EKM OmniMeter v3 and above request preamble

- Type of field EKM OmniMeter v3 and above request preamble is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is written to the meter. [OUT]
- Format of field A sequence of verbatim words of length 2. [WORDS]
- ► Constant =2f=3f

Protocol Field I TWELVEC address - ID.TWELVEC - Field ID 6929

TWELVEC address - ID.TWELVEC - Field ID 6929

Technical Description of TWELVEC address

This is a twelve character address of a serial device.

- Type of field TWELVEC address is a An identifier. (Kind "ID")
- Direction of field This field is written to the meter from the input message. [GW_THEN_OUT]
- Format of field A sequence of verbatim words of length 12. [WORDS]

ekn metering the.

Protocol Field I EKM OmniMeter v4 request type A indentifier -CONST.OMNIV4A_REQ_TYPE - Field ID 27024

EKM OmniMeter v4 request type A indentifier -CONST.OMNIV4A_REQ_TYPE - Field ID 27024

Technical Description of EKM OmniMeter v4 request type A indentifier

- Type of field EKM OmniMeter v4 request type A indentifier is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is written to the meter. [OUT]
- Format of field A sequence of verbatim words of length 2. [WORDS]
- **Constant** =30=30

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above request postamble -CONST.OMNIV3_REQ_POSTAMBLE - Field ID 26945

EKM OmniMeter v3 and above request postamble -CONST.OMNIV3_REQ_POSTAMBLE - Field ID 26945

Technical Description of EKM OmniMeter v3 and above request postamble

- Type of field EKM OmniMeter v3 and above request postamble is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is written to the meter. [OUT]
- Format of field A sequence of verbatim words of length 3. [WORDS]
- Constant =21=0d=0a

ekn metering the.

Protocol Field I EKM OmniMeter v4 response wait time -INTERVAL.OMNIV4AB_RESP_WAIT - Field ID 27105

EKM OmniMeter v4 response wait time -INTERVAL.OMNIV4AB_RESP_WAIT - Field ID 27105

Technical Description of EKM OmniMeter v4 response wait time

- ▶ Type of field EKM OmniMeter v4 response wait time is a An interval of time (Kind "INTERVAL")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field An interval to wait until input is available to read of length 600. [WAIT]

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above response preamble -CONST.OMNIV3_RESP_PREAMBLE - Field ID 26946

EKM OmniMeter v3 and above response preamble -CONST.OMNIV3_RESP_PREAMBLE - Field ID 26946

Technical Description of EKM OmniMeter v3 and above response preamble

- Type of field EKM OmniMeter v3 and above response preamble is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 1. [IGNORE]
- ► Constant =02

ekm metering the.

Protocol Field I Beginning of EKM CRC14 calculation -PINSN.EKMCRC14_BEGIN - Field ID 26948

Beginning of EKM CRC14 calculation - PINSN.EKMCRC14_BEGIN - Field ID 26948

Technical Description of Beginning of EKM CRC14 calculation

- ▶ Type of field Beginning of EKM CRC14 calculation is a Protocol instruction (Kind "PINSN")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A marker indicating the beginning of the EKM CRC14 calculation of length 0. [EKMCRC14_BEGIN]

Protocol Field | Meter model - ID.MODEL - Field ID 2

Meter model - ID.MODEL - Field ID 2

Technical Description of Meter model

The model number as reported by the EKM OmniMeter v3 and above.

- ▶ Type of field Meter model is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field A sequence of verbatim words of length 2. [WORDS]
- Constant

Display Description

Display field name Model

Protocol Field Meter firmware version - ID-FWVER - Field ID 1

Meter firmware version - ID.FWVER - Field ID 1

Technical Description of Meter firmware version

The firmware version as reported by the EKM OmniMeter v3 and above.

- ▶ Type of field Meter firmware version is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field A sequence of verbatim words of length 1. [WORDS]
- Constant =15

Display Description

Display field name Firmware

Protocol Field I TWELVEC address - ID.TWELVEC - Field ID 6929

TWELVEC address - ID.TWELVEC - Field ID 6929

Technical Description of TWELVEC address

This is a twelve character address of a serial device.

- Type of field TWELVEC address is a An identifier. (Kind "ID")
- Direction of field This field is read from the meter and checked against a field in the input message. [IN_THEN_CHECK]
- Format of field A sequence of verbatim words of length 12. [WORDS]

Protocol Field | Total energy - E.TOTAL - Field ID 3

Total energy - E.TOTAL - Field ID 3

Technical Description of Total energy

Cumulative energy flowing in either direction.

- **Type of field** *Total energy* is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Total energy is read from the meter in units of 0.1 KW-hr
- Output Scale Total energy is displayed and stored in units of 1 KW-hr
- Field Range Total energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Total energy - E.TOTAL - Field ID 3

Display Description

Total kWh. This value is returned by the meter. It is calculated the sum of all Total kWh 4 tariffs. Total kWh is Forward kWh + Reverse kWh. It is the measure of how much energy has been measured (both Forward and Reverse) since the meter was installed.

- Display field name kWh_Tot
- Display scale

Protocol Field I Reactive energy - E.REACTIVE_TOTAL - Field ID 38

Reactive energy - E.REACTIVE_TOTAL - Field ID 38

Technical Description of Reactive energy

Cumulative reactive energy measured in either direction through the meter.

- ▶ Type of field *Reactive energy* is a Measurement of cumulative energy. (Kind "E")
- Input Scale Reactive energy is read from the meter in units of 0.1 KW-hr
- Output Scale Reactive energy is displayed and stored in units of 1 KW-hr
- Field Range Reactive energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Display Description

- Display field name Reactive_Energy_Tot
- Display scale

ekn metering Inc.

Protocol Field I Total upstream energy - E.UPSTREAM_TOTAL - Field ID 8

Total upstream energy - E.UPSTREAM_TOTAL - Field ID 8

Technical Description of Total upstream energy

Cumulative energy flowing upstream to the grid.

- ▶ Type of field Total upstream energy is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Total upstream energy is read from the meter in units of 0.1 KW-hr
- Output Scale Total upstream energy is displayed and stored in units of 1 KW-hr
- Field Range Total upstream energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

ekn metering the.

Protocol Field II Total upstream energy - E.UPSTREAM_TOTAL - Field ID 8

Display Description

Reverse kWh. This value is returned by the meter. It is calculated the sum of all four Reverse kWh tariffs. Reverse kWh is the measure of how much energy has been measured going toward the grid since the meter was installed.

- Display field name Rev_kWh_Tot
- Display scale

Protocol Field | Line 1 energy - E.L1 - Field ID 51

Line 1 energy - E.L1 - Field ID 51

Technical Description of Line 1 energy

Cumulative energy flowing in either direction on line 1.

- Type of field Line 1 energy is a Measurement of cumulative energy. (Kind "E")
- Input Scale Line 1 energy is read from the meter in units of 0.1 KW-hr
- Output Scale Line 1 energy is displayed and stored in units of 1 KW-hr
- Field Range Line 1 energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Line 1 energy - E.L1 - Field ID 51

Display Description

The v4 Meter keeps track of Total kWh on each line. This is the Total kWh (Forward kWh + Reverse kWh) measured on Line 1 since the meter was installed.

- Display field name kWh_Ln_1
- Display scale

Protocol Field | Line 2 energy - E.L2 - Field ID 52

Line 2 energy - E.L2 - Field ID 52

Technical Description of Line 2 energy

Cumulative energy flowing in either direction on line 2.

- Type of field Line 2 energy is a Measurement of cumulative energy. (Kind "E")
- Input Scale Line 2 energy is read from the meter in units of 0.1 KW-hr
- Output Scale Line 2 energy is displayed and stored in units of 1 KW-hr
- Field Range Line 2 energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Line 2 energy - E.L2 - Field ID 52

Display Description

The v4 Meter keeps track of Total kWh on each line. This is the Total kWh (Forward kWh + Reverse kWh) measured on Line 2 since the meter was installed.

- Display field name kWh_Ln_2
- Display scale

Protocol Field | Line 3 energy - E.L3 - Field ID 53

Line 3 energy - E.L3 - Field ID 53

Technical Description of Line 3 energy

Cumulative energy flowing in either direction on line 3.

- Type of field Line 3 energy is a Measurement of cumulative energy. (Kind "E")
- Input Scale Line 3 energy is read from the meter in units of 0.1 KW-hr
- Output Scale Line 3 energy is displayed and stored in units of 1 KW-hr
- Field Range Line 3 energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Line 3 energy - E.L3 - Field ID 53

Display Description

The v4 Meter keeps track of Total kWh on each line. This is the Total kWh (Forward kWh + Reverse kWh) measured on Line 3 since the meter was installed.

- Display field name kWh_Ln_3
- Display scale

EKM METERING INC.

Protocol Field | Line 1 upstream energy - E.UPSTREAM_L1 - Field ID 54

Line 1 upstream energy - E.UPSTREAM_L1 - Field ID 54

Technical Description of *Line 1 upstream energy*

Cumulative energy flowing upstream to the grid on line 1.

- ▶ Type of field Line 1 upstream energy is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Line 1 upstream energy is read from the meter in units of 0.1 KW-hr
- Output Scale Line 1 upstream energy is displayed and stored in units of 1 KW-hr
- Field Range Line 1 upstream energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM METERING INC.

Protocol Field II Line 1 upstream energy - E.UPSTREAM_L1 - Field ID 54

Display Description

The v4 Meter keeps track of Reverse kWh on each line. This is the Reverse kWh measured on Line 1 since the meter was installed.

- Display field name Rev_kWh_Ln_1
- Display scale

Protocol Field | Line 2 upstream energy - E.UPSTREAM_L2 - Field ID 55

Line 2 upstream energy - E.UPSTREAM_L2 - Field ID 55

Technical Description of Line 2 upstream energy

Cumulative energy flowing upstream to the grid on line 2.

- Type of field Line 2 upstream energy is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Line 2 upstream energy is read from the meter in units of 0.1 KW-hr
- Output Scale Line 2 upstream energy is displayed and stored in units of 1 KW-hr
- Field Range Line 2 upstream energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM METERING INC.

Protocol Field II Line 2 upstream energy - E.UPSTREAM_L2 - Field ID 55

Display Description

The v4 Meter keeps track of Reverse kWh on each line. This is the Reverse kWh measured on Line 2 since the meter was installed.

- Display field name Rev_kWh_Ln_2
- Display scale

Protocol Field | Line 3 upstream energy - E.UPSTREAM_L3 - Field ID 56

Line 3 upstream energy - E.UPSTREAM_L3 - Field ID 56

Technical Description of Line 3 upstream energy

Cumulative energy flowing upstream to the grid on line 3.

- Type of field Line 3 upstream energy is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Line 3 upstream energy is read from the meter in units of 0.1 KW-hr
- Output Scale Line 3 upstream energy is displayed and stored in units of 1 KW-hr
- ▶ Field Range Line 3 upstream energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

ekm metering the.

Protocol Field II Line 3 upstream energy - E.UPSTREAM_L3 - Field ID 56

Display Description

The v4 Meter keeps track of Reverse kWh on each line. This is the Reverse kWh measured on Line 3 since the meter was installed.

- Display field name Rev_kWh_Ln_3
- Display scale

Protocol Field I Energy since reset - E.SINCE_RESET - Field ID 39

Energy since reset - E.SINCE_RESET - Field ID 39

Technical Description of Energy since reset

Cumulative energy flowing in either direction since last reset of this field.

- ▶ Type of field Energy since reset is a Measurement of cumulative energy. (Kind "E")
- Input Scale Energy since reset is read from the meter in units of 0.1 KW-hr
- Output Scale Energy since reset is displayed and stored in units of 1 KW-hr
- Field Range Energy since reset as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM METERING INC.

Protocol Field II Energy since reset - E.SINCE_RESET - Field ID 39

Display Description

This Is Resettable Total kWh. This is similar to the Total kWh register, except that this one can be reset to 0 over RS485 using our EKM Dash software and a USB to RS485 converter. Similar to a trip odometer on your car.

- Display field name kWh_Rst
- Display scale

<u>ekm metering Inc.</u>

Protocol Field I Upstream energy since reset - E.UPSTREAM_SINCE_RESET - Field ID 40

Upstream energy since reset - E.UPSTREAM_SINCE_RESET - Field ID 40

Technical Description of Upstream energy since reset

Cumulative energy flowing upstream to the grid since last reset of this field.

- ▶ Type of field Upstream energy since reset is a Measurement of cumulative energy. (Kind "E")
- Input Scale Upstream energy since reset is read from the meter in units of 0.1 KW-hr
- Output Scale Upstream energy since reset is displayed and stored in units of 1 KW-hr
- ▶ Field Range Upstream energy since reset as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM Metering Inc. – www.ekmmetering.com – info@ekmmetering.com – (831)425-7371

<u>ekm metering Inc.</u>

Protocol Field II Upstream energy since reset - E.UPSTREAM_SINCE_RESET - Field ID 40

Display Description

This Is Resettable Reverse kWh. This is similar to the Reverse kWh register, except that this one can be reset to 0 over RS485 using our EKM Dash software and a USB to RS485 converter. Similar to a trip odometer on your car.

- Display field name Rev_kWh_Rst
- Display scale

Protocol Field | Line 1 voltage - V.L1 - Field ID 13

Line 1 voltage - V.L1 - Field ID 13

Technical Description of *Line 1 voltage*

The RMS voltage across line 1 and neutral.

- ▶ Type of field Line 1 voltage is a Measurement of RMS voltage. (Kind "V")
- Input Scale Line 1 voltage is read from the meter in units of 0.1 V
- Output Scale Line 1 voltage is displayed and stored in units of 1 V
- Field Range Line 1 voltage as displayed and stored may have a value of 0 to 999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Protocol Field II Line 1 voltage - V.L1 - Field ID 13

Display Description

This is the measure of the voltage from Line 1 to Neutral. Voltage is calculated by the meter as RMS Volts. This is a real-time value.

- Display field name RMS_Volts_Ln_1
- Display scale

Protocol Field | Line 2 voltage - V.L2 - Field ID 14

Line 2 voltage - V.L2 - Field ID 14

Technical Description of *Line 2 voltage*

The RMS voltage across line 2 and neutral.

- ▶ Type of field Line 2 voltage is a Measurement of RMS voltage. (Kind "V")
- Input Scale Line 2 voltage is read from the meter in units of 0.1 V
- Output Scale Line 2 voltage is displayed and stored in units of 1 V
- Field Range Line 2 voltage as displayed and stored may have a value of 0 to 999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Protocol Field II Line 2 voltage - V.L2 - Field ID 14

Display Description

This is the measure of the voltage from Line 2 to Neutral. Voltage is calculated by the meter as RMS Volts. This is a real-time value.

- Display field name RMS_Volts_Ln_2
- Display scale

Protocol Field | Line 3 voltage - V.L3 - Field ID 15

Line 3 voltage - V.L3 - Field ID 15

Technical Description of *Line 3 voltage*

The RMS voltage across line 3 and neutral.

- ▶ Type of field Line 3 voltage is a Measurement of RMS voltage. (Kind "V")
- Input Scale Line 3 voltage is read from the meter in units of 0.1 V
- Output Scale Line 3 voltage is displayed and stored in units of 1 V
- Field Range Line 3 voltage as displayed and stored may have a value of 0 to 999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Protocol Field II Line 3 voltage - V.L3 - Field ID 15

Display Description

This is the measure of the voltage from Line 3 to Neutral. Voltage is calculated by the meter as RMS Volts. This is a real-time value.

- Display field name RMS_Volts_Ln_3
- Display scale

Protocol Field | Line 1 current - I.L1 - Field ID 16

Line 1 current - I.L1 - Field ID 16

Technical Description of Line 1 current

The RMS current flowing in either direction through line 1.

- ▶ Type of field *Line 1 current* is a Measurement of RMS current. (Kind "I")
- Input Scale Line 1 current is read from the meter in units of 0.1 A
- Output Scale Line 1 current is displayed and stored in units of 1 A
- Field Range Line 1 current as displayed and stored may have a value of 0 to 9999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 5. [ASCII_NUMBER]

Protocol Field II Line 1 current - I.L1 - Field ID 16

Display Description

This is the measure of Amps or Current on Line 1. This value is calculated by the meter. This is a real-time value.

- Display field name Amps_Ln_1scale=-1
- Display scale

Protocol Field | Line 2 current - I.L2 - Field ID 17

Line 2 current - I.L2 - Field ID 17

Technical Description of Line 2 current

The RMS current flowing in either direction through line 2.

- ▶ Type of field *Line 2 current* is a Measurement of RMS current. (Kind "I")
- Input Scale Line 2 current is read from the meter in units of 0.1 A
- Output Scale Line 2 current is displayed and stored in units of 1 A
- Field Range Line 2 current as displayed and stored may have a value of 0 to 9999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 5. [ASCII_NUMBER]

Protocol Field II Line 2 current - I.L2 - Field ID 17

Display Description

This is the measure of Amps or Current on Line 2. This value is calculated by the meter. This is a real-time value.

- Display field name Amps_Ln_2
- Display scale

Protocol Field | Line 3 current - I.L3 - Field ID 18

Line 3 current - I.L3 - Field ID 18

Technical Description of Line 3 current

The RMS current flowing in either direction through line 3.

- ▶ Type of field Line 3 current is a Measurement of RMS current. (Kind "I")
- Input Scale Line 3 current is read from the meter in units of 0.1 A
- Output Scale Line 3 current is displayed and stored in units of 1 A
- Field Range Line 3 current as displayed and stored may have a value of 0 to 9999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 5. [ASCII_NUMBER]

Protocol Field II Line 3 current - I.L3 - Field ID 18

Display Description

This is the measure of Amps or Current on Line 3. This value is calculated by the meter. This is a real-time value.

- Display field name Amps_Ln_3
- Display scale

Protocol Field | Line 1 power - P.L1 - Field ID 19

Line 1 power - P.L1 - Field ID 19

Technical Description of Line 1 power

The RMS power flowing in either direction through line 1.

- ▶ Type of field Line 1 power is a Measurement of RMS power. (Kind "P")
- Input Scale Line 1 power is read from the meter in units of 1 W
- Output Scale Line 1 power is displayed and stored in units of 1 W
- ▶ Field Range Line 1 power as displayed and stored may have a value of 0 to 9999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Protocol Field II Line 1 power - P.L1 - Field ID 19

Display Description

This is the measure of Watts or Power on Line 1. This is a value that is calculated by the meter. Watts = Volts \times Amps \times Power Factor) on Line 1. This value is calculated by the meter. This is a real-time value.

- Display field name RMS_Watts_Ln_1
- Display scale

Protocol Field | Line 2 power - P.L2 - Field ID 20

Line 2 power - P.L2 - Field ID 20

Technical Description of Line 2 power

The RMS power flowing in either direction through line 2.

- ▶ Type of field Line 2 power is a Measurement of RMS power. (Kind "P")
- Input Scale Line 2 power is read from the meter in units of 1 W
- Output Scale Line 2 power is displayed and stored in units of 1 W
- ▶ Field Range Line 2 power as displayed and stored may have a value of 0 to 9999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Protocol Field II Line 2 power - P.L2 - Field ID 20

Display Description

This is the measure of Watts or Power on Line 2. This is a value that is calculated by the meter. Watts = Volts \times Amps \times Power Factor) on Line 2. This value is calculated by the meter. This is a real-time value.

- Display field name RMS_Watts_Ln_2
- Display scale

Protocol Field | Line 3 power - P.L3 - Field ID 21

Line 3 power - P.L3 - Field ID 21

Technical Description of Line 3 power

The RMS power flowing in either direction through line 3.

- ▶ Type of field Line 3 power is a Measurement of RMS power. (Kind "P")
- Input Scale Line 3 power is read from the meter in units of 1 W
- Output Scale Line 3 power is displayed and stored in units of 1 W
- ▶ Field Range Line 3 power as displayed and stored may have a value of 0 to 9999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Protocol Field II Line 3 power - P.L3 - Field ID 21

Display Description

This is the measure of Watts or Power on Line 3. This is a value that is calculated by the meter. Watts = Volts \times Amps \times Power Factor) on Line 3. This value is calculated by the meter. This is a real-time value.

- Display field name RMS_Watts_Ln_3
- Display scale

Protocol Field | Total power - P.TOTAL - Field ID 22

Total power - P.TOTAL - Field ID 22

Technical Description of Total power

The RMS power flowing in either direction.

- ▶ Type of field Total power is a Measurement of RMS power. (Kind "P")
- ▶ Input Scale Total power is read from the meter in units of 1 W
- Output Scale Total power is displayed and stored in units of 1 W
- Field Range Total power as displayed and stored may have a value of 0 to 9999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Protocol Field II Total power - P.TOTAL - Field ID 22

Display Description

This is the measure of Total Watts or Power. This is a value that is calculated by the meter. Total Watts = (Volts \times Amps \times Power Factor) on all Lines. This value is calculated by the meter. This is a real-time value.

- Display field name RMS_Watts_Tot
- Display scale

Protocol Field | Line 1 power factor - PF.L1 - Field ID 23

Line 1 power factor - PF.L1 - Field ID 23

Technical Description of Line 1 power factor

The current load power factor measurement for line 1.

- Type of field Line 1 power factor is a Measurement of current load power factor. The load power factor is represented by a number between zero and 200. This number indicates an inductive load if less than 100, a capacitive load if greater than 100, and a purely resistive load if equal to 100. (Kind "PF")
- Input Scale Line 1 power factor is read from the meter in units of DIMENSIONLESS
- Output Scale Line 1 power factor is displayed and stored in units of DIMENSIONLESS
- Field Range Line 1 power factor as displayed and stored may have a value of 0 to 200
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field A power factor as formatted by the EKM OmniMeter v3 and later meters of length 4. [OMNIV3_PF]

Protocol Field II Line 1 power factor - PF.L1 - Field ID 23

Display Description

Power Factor is a measure of power quality on Line 1. This is Cosine Theta. A perfect Power Factor (1.00) is when the voltage sine wave and the amperage sine wave are in perfect alignment on top of each other. When the voltage and amperage sine waves are off of each other then you have less than perfect Power Factor. When voltage is leading amps it is considered leading (Inductive or L),when voltage is lagging amps it is considered lagging (Capacitive or C)

- Display field name Power_Factor_Ln_1
- Display scale

Protocol Field | Line 2 power factor - PF.L2 - Field ID 24

Line 2 power factor - PF.L2 - Field ID 24

Technical Description of Line 2 power factor

The current load power factor measurement for line 2.

- Type of field Line 2 power factor is a Measurement of current load power factor. The load power factor is represented by a number between zero and 200. This number indicates an inductive load if less than 100, a capacitive load if greater than 100, and a purely resistive load if equal to 100. (Kind "PF")
- Input Scale Line 2 power factor is read from the meter in units of DIMENSIONLESS
- Output Scale Line 2 power factor is displayed and stored in units of DIMENSIONLESS
- Field Range Line 2 power factor as displayed and stored may have a value of 0 to 200
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field A power factor as formatted by the EKM OmniMeter v3 and later meters of length 4. [OMNIV3_PF]

EKM METERING INC.

Protocol Field II Line 2 power factor - PF.L2 - Field ID 24

Display Description

Power Factor is a measure of power quality on Line 2. This is Cosine Theta. A perfect Power Factor (1.00) is when the voltage sine wave and the amperage sine wave are in perfect alignment on top of each other. When the voltage and amperage sine waves are off of each other then you have less than perfect Power Factor. When voltage is leading amps it is considered leading (Inductive or L),when voltage is lagging amps it is considered lagging (Capacitive or C)

- Display field name Power_Factor_Ln_2
- Display scale

Protocol Field | Line 3 power factor - PF.L3 - Field ID 25

Line 3 power factor - PF.L3 - Field ID 25

Technical Description of Line 3 power factor

The current load power factor measurement for line 3.

- Type of field Line 3 power factor is a Measurement of current load power factor. The load power factor is represented by a number between zero and 200. This number indicates an inductive load if less than 100, a capacitive load if greater than 100, and a purely resistive load if equal to 100. (Kind "PF")
- Input Scale Line 3 power factor is read from the meter in units of DIMENSIONLESS
- Output Scale Line 3 power factor is displayed and stored in units of DIMENSIONLESS
- Field Range Line 3 power factor as displayed and stored may have a value of 0 to 200
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field A power factor as formatted by the EKM OmniMeter v3 and later meters of length 4. [OMNIV3_PF]

<u>EKM METERING INC.</u>

Protocol Field II Line 3 power factor - PF.L3 - Field ID 25

Display Description

Power Factor is a measure of power quality on Line 3. This is Cosine Theta. A perfect Power Factor (1.00) is when the voltage sine wave and the amperage sine wave are in perfect alignment on top of each other. When the voltage and amperage sine waves are off of each other then you have less than perfect Power Factor. When voltage is leading amps it is considered leading (Inductive or L),when voltage is lagging amps it is considered lagging (Capacitive or C)

- Display field name Power_Factor_Ln_3
- Display scale

Protocol Field I Line 1 reactive power - P.REACTIVE_L1 - Field ID 41

Line 1 reactive power - P.REACTIVE_L1 - Field ID 41

Technical Description of Line 1 reactive power

The RMS reactive power flowing in either direction through line 1.

- ▶ Type of field Line 1 reactive power is a Measurement of RMS power. (Kind "P")
- Input Scale Line 1 reactive power is read from the meter in units of 1 W
- Output Scale Line 1 reactive power is displayed and stored in units of 1 W
- Field Range Line 1 reactive power as displayed and stored may have a value of 0 to 9999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Display Description

- Display field name Reactive_Pwr_Ln_1
- Display scale

Protocol Field I Line 2 reactive power - P.REACTIVE_L2 - Field ID 42

Line 2 reactive power - P.REACTIVE_L2 - Field ID 42

Technical Description of Line 2 reactive power

The RMS reactive power flowing in either direction through line 2.

- ▶ Type of field Line 2 reactive power is a Measurement of RMS power. (Kind "P")
- Input Scale Line 2 reactive power is read from the meter in units of 1 W
- Output Scale Line 2 reactive power is displayed and stored in units of 1 W
- Field Range Line 2 reactive power as displayed and stored may have a value of 0 to 9999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Display Description

- Display field name Reactive_Pwr_Ln_2
- Display scale

Protocol Field I Line 3 reactive power - P.REACTIVE_L3 - Field ID 43

Line 3 reactive power - P.REACTIVE_L3 - Field ID 43

Technical Description of Line 3 reactive power

The RMS reactive power flowing in either direction through line 3.

- ▶ Type of field Line 3 reactive power is a Measurement of RMS power. (Kind "P")
- Input Scale Line 3 reactive power is read from the meter in units of 1 W
- Output Scale Line 3 reactive power is displayed and stored in units of 1 W
- Field Range Line 3 reactive power as displayed and stored may have a value of 0 to 9999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Display Description

- Display field name Reactive_Pwr_Ln_3
- Display scale

Protocol Field | Total reactive power - P.REACTIVE_TOTAL - Field ID 44

Total reactive power - P.REACTIVE_TOTAL - Field ID 44

Technical Description of Total reactive power

The RMS reactive power currently flowing in either direction.

- ▶ Type of field Total reactive power is a Measurement of RMS power. (Kind "P")
- ▶ Input Scale Total reactive power is read from the meter in units of 1 W
- Output Scale Total reactive power is displayed and stored in units of 1 W
- Field Range Total reactive power as displayed and stored may have a value of 0 to 9999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Display Description

- Display field name Reactive_Pwr_Tot
- Display scale

Protocol Field I Line 1 frequency - FREQ.L1 - Field ID 47

Line 1 frequency - FREQ.L1 - Field ID 47

Technical Description of Line 1 frequency

The frequency of AC power flowing through line 1.

- Type of field Line 1 frequency is a Measurement of frequency. (Kind "FREQ")
- Input Scale Line 1 frequency is read from the meter in units of 0.1 Hz
- Output Scale Line 1 frequency is displayed and stored in units of 1 Hz
- Field Range Line 1 frequency as displayed and stored may have a value of 0 to 999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Display Description

- Display field name Line_Freq
- Display scale

Protocol Field I Pulse input 1 pulse count - COUNT.P1 - Field ID 31

Pulse input 1 pulse count - COUNT.P1 - Field ID 31

Technical Description of Pulse input 1 pulse count

Cumulative pulse count for pulse input 1. The reported pulse count increments once per RATIO.P1 actual counted pulses.

- ▶ Type of field Pulse input 1 pulse count is a Cumulative count of events. (Kind "COUNT")
- Input Scale Pulse input 1 pulse count is read from the meter in units of 1 NONE
- Output Scale Pulse input 1 pulse count is displayed and stored in units of NONE
- Field Range Pulse input 1 pulse count as displayed and stored may have a value of 0 to 99999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM METERING INC.

Protocol Field II Pulse input 1 pulse count - COUNT.P1 - Field ID 31

Display Description

Pulse Count 1 is the number of contact closures or Pulse Counts the meter has measured divided by the Pulse Count Ratio. If the Pulse Count Ratio is 1:1000, it will take 1000 inputs to increment this register 1. This can be used to count pulses from Water Meters or Gas Meters, or other pulse output devices.

- Display field name Pulse_Cnt_1
- Display scale

Protocol Field I Pulse input 2 pulse count - COUNT.P2 - Field ID 32

Pulse input 2 pulse count - COUNT.P2 - Field ID 32

Technical Description of Pulse input 2 pulse count

Cumulative pulse count for pulse input 2. The reported pulse count increments once per RATIO.P2 actual counted pulses.

- Type of field Pulse input 2 pulse count is a Cumulative count of events. (Kind "COUNT")
- Input Scale Pulse input 2 pulse count is read from the meter in units of 1 NONE
- Output Scale Pulse input 2 pulse count is displayed and stored in units of NONE
- Field Range Pulse input 2 pulse count as displayed and stored may have a value of 0 to 99999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM METERING INC.

Protocol Field II Pulse input 2 pulse count - COUNT.P2 - Field ID 32

Display Description

Pulse Count 2 is the number of contact closures or Pulse Counts the meter has measured divided by the Pulse Count Ratio. If the Pulse Count Ratio is 1:1000, it will take 1000 inputs to increment this register 1. This can be used to count pulses from Water Meters or Gas Meters, or other pulse output devices.

- Display field name Pulse_Cnt_2
- Display scale

Protocol Field I Pulse input 3 pulse count - COUNT.P3 - Field ID 33

Pulse input 3 pulse count - COUNT.P3 - Field ID 33

Technical Description of Pulse input 3 pulse count

Cumulative pulse count for pulse input 3. The reported pulse count increments once per RATIO.P3 actual counted pulses.

- Type of field Pulse input 3 pulse count is a Cumulative count of events. (Kind "COUNT")
- Input Scale Pulse input 3 pulse count is read from the meter in units of 1 NONE
- Output Scale Pulse input 3 pulse count is displayed and stored in units of NONE
- Field Range Pulse input 3 pulse count as displayed and stored may have a value of 0 to 99999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM METERING INC.

Protocol Field II Pulse input 3 pulse count - COUNT.P3 - Field ID 33

Display Description

Pulse Count 3 is the number of contact closures or Pulse Counts the meter has measured divided by the Pulse Count Ratio. If the Pulse Count Ratio is 1:1000, it will take 1000 inputs to increment this register 1. This can be used to count pulses from Water Meters or Gas Meters, or other pulse output devices.

- Display field name Pulse_Cnt_3
- Display scale

<u>EKM METERING INC.</u>

Protocol Field I EKM OmniMeter v4 input states -COMPOUND.OMNIV4A_INPUT_STATE - Field ID 27035

EKM OmniMeter v4 input states -COMPOUND.OMNIV4A_INPUT_STATE - Field ID 27035

ekm metering thc.

Protocol Field II EKM OmniMeter v4 input states -COMPOUND.OMNIV4A_INPUT_STATE - Field ID 27035

Technical Description of EKM OmniMeter v4 input states

- Type of field EKM OmniMeter v4 input states is a Single value representing multiple values across multiple fields, which is expanded into multiple fields and values. (Kind "COMPOUND")
- Direction of field This field is read from the meter and inserted as several fields in the output message. [IN_THEN_GW_COMPOUND]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 1. [ASCII_NUMBER]

Field Value	CHOICE.STATE_P1	CHOICE.STATE_P2	CHOICE.STATE_P3
0	1	1	1
1	1	1	0
2	1	0	1
3	1	0	0
4	0	1	1
5	0	1	0
6	0	0	1
7	0	0	0

ekm metering thc.

Protocol Field I EKM OmniMeter v4 power directions -COMPOUND.OMNIV4A_POWER_DIRECTION - Field ID 27036

EKM OmniMeter v4 power directions -COMPOUND.OMNIV4A_POWER_DIRECTION - Field ID 27036

ekn metering finc.

Protocol Field II EKM OmniMeter v4 power directions -COMPOUND.OMNIV4A_POWER_DIRECTION - Field ID 27036

Technical Description of EKM OmniMeter v4 power directions

- Type of field EKM OmniMeter v4 power directions is a Single value representing multiple values across multiple fields, which is expanded into multiple fields and values. (Kind "COMPOUND")
- Direction of field This field is read from the meter and inserted as several fields in the output message. [IN_THEN_GW_COMPOUND]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 1. [ASCII_NUMBER]

Field Value	CHOICE.DIRECTION_L1	CHOICE.DIRECTION_L2	CHOICE.DIRECTION_L3
1	1	1	1
2	1	1	0
3	1	0	1
4	0	1	1
5	1	0	0
6	0	1	0
7	0	0	1
8	0	0	0

ekm metering the.

Protocol Field I EKM OmniMeter v4 output states -COMPOUND.OMNIV4A_OUTPUT_STATE - Field ID 27037

EKM OmniMeter v4 output states -COMPOUND.OMNIV4A_OUTPUT_STATE - Field ID 27037

Technical Description of EKM OmniMeter v4 output states

- Type of field EKM OmniMeter v4 output states is a Single value representing multiple values across multiple fields, which is expanded into multiple fields and values. (Kind "COMPOUND")
- Direction of field This field is read from the meter and inserted as several fields in the output message. [IN_THEN_GW_COMPOUND]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 1. [ASCII_NUMBER]

Field Value	CHOICE.STATE_SW1	CHOICE.STATE_SW2
1	0	0
2	0	1
3	1	0
4	1	1

ekm metering the.

Protocol Field I EKM OmniMeter v4 energy scale field - VAR.OMNIV4A_E_SCALE - Field ID 27047

EKM OmniMeter v4 energy scale field - VAR.OMNIV4A_E_SCALE - Field ID 27047

Technical Description of EKM OmniMeter v4 energy scale field

- Type of field EKM OmniMeter v4 energy scale field is a A variable (Kind "VAR")
- Direction of field This field is read from the meter and stored as a variable for future use. [IN_THEN_STORE]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 1. [ASCII_NUMBER]

ekn metering the.

Protocol Field I EKM OmniMeter v4 response type A constant 1 - CONST.OMNIV4A_RESP_CONST_1 - Field ID 27033

EKM OmniMeter v4 response type A constant 1 -CONST.OMNIV4A_RESP_CONST_1 - Field ID 27033

Technical Description of EKM OmniMeter v4 response type A constant 1

- Type of field EKM OmniMeter v4 response type A constant 1 is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 2. [IGNORE]
- **Constant** =30=30

ekm metering the.

Protocol Field I EKM OmniMeter v3 and above date and time field -DATETIME.OMNIV3 - Field ID 26937

EKM OmniMeter v3 and above date and time field - DATETIME.OMNIV3 - Field ID 26937

Technical Description of EKM OmniMeter v3 and above date and time field

- Type of field EKM OmniMeter v3 and above date and time field is a Date and time measured since 1Jan1970 UTC, without leap seconds (Kind "DATETIME")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A date as formatted by the EKM OmniMeter v3 and later meters of length 14. [OMNIV3_DATE]

ekn metering the.

Protocol Field I EKM OmniMeter v4 request type A indentifier -CONST.OMNIV4A_REQ_TYPE - Field ID 27024

EKM OmniMeter v4 request type A indentifier -CONST.OMNIV4A_REQ_TYPE - Field ID 27024

Technical Description of EKM OmniMeter v4 request type A indentifier

- Type of field EKM OmniMeter v4 request type A indentifier is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of verbatim words of length 2. [WORDS]
- **Constant** =30=30

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above response postamble -CONST.OMNIV3_RESP_POSTAMBLE - Field ID 26947

EKM OmniMeter v3 and above response postamble -CONST.OMNIV3_RESP_POSTAMBLE - Field ID 26947

Technical Description of EKM OmniMeter v3 and above response postamble

- Type of field EKM OmniMeter v3 and above response postamble is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 4. [IGNORE]
- Constant =21=0d=0a=03

ekn metering the.

Protocol Field I End of EKM CRC14 calculation and check against computed value or generate computed value - PINSN.EKMCRC14_END - Field ID 26949

End of EKM CRC14 calculation and check against computed value or generate computed value - PINSN.EKMCRC14_END - Field ID 26949

Technical Description of End of EKM CRC14 calculation and check against computed value or generate computed value

- Type of field End of EKM CRC14 calculation and check against computed value or generate computed value is a Protocol instruction (Kind "PINSN")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A two word EKM CRC14 value and the EKM CRC14 check of the calculated value against the field as read from the meter of length 2. [EKMCRC14_END]

ekn metering the.

Protocol Field I EKM OmniMeter v4 delay before sending close string -INTERVAL.OMNIV4AB_CLOSE_DELAY - Field ID 27081

EKM OmniMeter v4 delay before sending close string -INTERVAL.OMNIV4AB_CLOSE_DELAY - Field ID 27081

Technical Description of EKM OmniMeter v4 delay before sending close string

- Type of field EKM OmniMeter v4 delay before sending close string is a An interval of time (Kind "INTERVAL")
- Direction of field This field does not read from or write to the meter. [NONE]
- Format of field A delay of length 200. [DELAY]

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above close string -CONST.OMNIV3_CLOSE_CONST - Field ID 26992

EKM OmniMeter v3 and above close string -CONST.OMNIV3_CLOSE_CONST - Field ID 26992

Technical Description of EKM OmniMeter v3 and above close string

- Type of field EKM OmniMeter v3 and above close string is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is written to the meter. [OUT]
- Format of field A sequence of input words to ignore of length 5. [IGNORE]
- Constant =01=42=30=03=75

ekn metering the.

Protocol Field I EKM OmniMeter v4 delay between reads -INTERVAL.OMNIV4AB_READ_DELAY - Field ID 27076

EKM OmniMeter v4 delay between reads -INTERVAL.OMNIV4AB_READ_DELAY - Field ID 27076

Technical Description of EKM OmniMeter v4 delay between reads

- ▶ Type of field EKM OmniMeter v4 delay between reads is a An interval of time (Kind "INTERVAL")
- Direction of field This field does not read from or write to the meter. [NONE]
- Format of field A delay of length 200. [DELAY]

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above request preamble - CONST.OMNIV3_REQ_PREAMBLE - Field ID 26944

EKM OmniMeter v3 and above request preamble -CONST.OMNIV3_REQ_PREAMBLE - Field ID 26944

Technical Description of EKM OmniMeter v3 and above request preamble

- Type of field EKM OmniMeter v3 and above request preamble is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is written to the meter. [OUT]
- Format of field A sequence of verbatim words of length 2. [WORDS]
- ► Constant =2f=3f

Protocol Field I TWELVEC address - ID.TWELVEC - Field ID 6929

TWELVEC address - ID.TWELVEC - Field ID 6929

Technical Description of TWELVEC address

This is a twelve character address of a serial device.

- Type of field TWELVEC address is a An identifier. (Kind "ID")
- Direction of field This field is written to the meter from the input message. [GW_THEN_OUT]
- Format of field A sequence of verbatim words of length 12. [WORDS]

ekn metering the.

Protocol Field I EKM OmniMeter v4 request type B indentifier -CONST.OMNIV4B_REQ_TYPE - Field ID 27054

EKM OmniMeter v4 request type B indentifier -CONST.OMNIV4B_REQ_TYPE - Field ID 27054

Technical Description of EKM OmniMeter v4 request type B indentifier

- Type of field EKM OmniMeter v4 request type B indentifier is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is written to the meter. [OUT]
- Format of field A sequence of verbatim words of length 2. [WORDS]
- **Constant** =30=31

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above request postamble -CONST.OMNIV3_REQ_POSTAMBLE - Field ID 26945

EKM OmniMeter v3 and above request postamble -CONST.OMNIV3_REQ_POSTAMBLE - Field ID 26945

Technical Description of EKM OmniMeter v3 and above request postamble

- Type of field EKM OmniMeter v3 and above request postamble is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is written to the meter. [OUT]
- Format of field A sequence of verbatim words of length 3. [WORDS]
- Constant =21=0d=0a

ekn metering the.

Protocol Field I EKM OmniMeter v4 response wait time -INTERVAL.OMNIV4AB_RESP_WAIT - Field ID 27105

EKM OmniMeter v4 response wait time -INTERVAL.OMNIV4AB_RESP_WAIT - Field ID 27105

Technical Description of EKM OmniMeter v4 response wait time

- ▶ Type of field EKM OmniMeter v4 response wait time is a An interval of time (Kind "INTERVAL")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field An interval to wait until input is available to read of length 600. [WAIT]

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above response preamble -CONST.OMNIV3_RESP_PREAMBLE - Field ID 26946

EKM OmniMeter v3 and above response preamble -CONST.OMNIV3_RESP_PREAMBLE - Field ID 26946

Technical Description of EKM OmniMeter v3 and above response preamble

- Type of field EKM OmniMeter v3 and above response preamble is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 1. [IGNORE]
- ► Constant =02

ekm metering the.

Protocol Field I Beginning of EKM CRC14 calculation -PINSN.EKMCRC14_BEGIN - Field ID 26948

Beginning of EKM CRC14 calculation - PINSN.EKMCRC14_BEGIN - Field ID 26948

Technical Description of Beginning of EKM CRC14 calculation

- ▶ Type of field Beginning of EKM CRC14 calculation is a Protocol instruction (Kind "PINSN")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A marker indicating the beginning of the EKM CRC14 calculation of length 0. [EKMCRC14_BEGIN]

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above model number - CONST.OMNIV3_MODEL - Field ID 26940

EKM OmniMeter v3 and above model number - CONST.OMNIV3_MODEL - Field ID 26940

Technical Description of EKM OmniMeter v3 and above model number

- Type of field EKM OmniMeter v3 and above model number is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of verbatim words of length 2. [WORDS]
- Constant

ekm metering the.

Protocol Field I EKM OmniMeter v4 firmware version -CONST.OMNIV4_FWVER - Field ID 27104

EKM OmniMeter v4 firmware version - CONST.OMNIV4_FWVER - Field ID 27104

Technical Description of EKM OmniMeter v4 firmware version

- Type of field EKM OmniMeter v4 firmware version is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of verbatim words of length 1. [WORDS]
- **Constant** =15

Protocol Field I TWELVEC address - ID.TWELVEC - Field ID 6929

TWELVEC address - ID.TWELVEC - Field ID 6929

Technical Description of TWELVEC address

This is a twelve character address of a serial device.

- Type of field TWELVEC address is a An identifier. (Kind "ID")
- Direction of field This field is read from the meter and checked against a field in the input message. [IN_THEN_CHECK]
- Format of field A sequence of verbatim words of length 12. [WORDS]

Protocol Field | Tariff 1 energy - E.T1 - Field ID 4

Tariff 1 energy - E.T1 - Field ID 4

Technical Description of Tariff 1 energy

Cumulative energy flowing in either direction during the Tariff 1 time period.

- ▶ Type of field Tariff 1 energy is a Measurement of cumulative energy. (Kind "E")
- Input Scale Tariff 1 energy is read from the meter in units of 0.1 KW-hr
- Output Scale Tariff 1 energy is displayed and stored in units of 1 KW-hr
- Field Range Tariff 1 energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Tariff 1 energy - E.T1 - Field ID 4

Display Description

Total kWh Tariff 1. This value is returned by the meter. It is the measure of how much energy has been measured (both Forward and Reverse) since the meter was installed within the Tariff 1 period. The Tariff 1 period is set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

- Display field name kWh_Tariff_1
- Display scale

Protocol Field | Tariff 2 energy - E.T2 - Field ID 5

Tariff 2 energy - E.T2 - Field ID 5

Technical Description of Tariff 2 energy

Cumulative energy flowing in either direction during the Tariff 2 time period.

- Type of field Tariff 2 energy is a Measurement of cumulative energy. (Kind "E")
- Input Scale Tariff 2 energy is read from the meter in units of 0.1 KW-hr
- Output Scale Tariff 2 energy is displayed and stored in units of 1 KW-hr
- Field Range Tariff 2 energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Tariff 2 energy - E.T2 - Field ID 5

Display Description

Total kWh Tariff 2. This value is returned by the meter. It is the measure of how much energy has been measured (both Forward and Reverse) since the meter was installed within the Tariff 2 period. The Tariff 2 period is set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

- Display field name kWh_Tariff_2
- Display scale

Protocol Field I Tariff 3 energy - E.T3 - Field ID 6

Tariff 3 energy - E.T3 - Field ID 6

Technical Description of Tariff 3 energy

Cumulative energy flowing in either direction during the Tariff 3 time period.

- Type of field Tariff 3 energy is a Measurement of cumulative energy. (Kind "E")
- Input Scale Tariff 3 energy is read from the meter in units of 0.1 KW-hr
- Output Scale Tariff 3 energy is displayed and stored in units of 1 KW-hr
- Field Range Tariff 3 energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Tariff 3 energy - E.T3 - Field ID 6

Display Description

Total kWh Tariff 3. This value is returned by the meter. It is the measure of how much energy has been measured (both Forward and Reverse) since the meter was installed within the Tariff 3 period. The Tariff 3 period is set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

- Display field name kWh_Tariff_3
- Display scale

Protocol Field | Tariff 4 energy - E.T4 - Field ID 7

Tariff 4 energy - E.T4 - Field ID 7

Technical Description of Tariff 4 energy

Cumulative energy flowing in either direction during the Tariff 4 time period.

- Type of field Tariff 4 energy is a Measurement of cumulative energy. (Kind "E")
- Input Scale Tariff 4 energy is read from the meter in units of 0.1 KW-hr
- Output Scale Tariff 4 energy is displayed and stored in units of 1 KW-hr
- Field Range Tariff 4 energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Tariff 4 energy - E.T.4 - Field ID 7

Display Description

Total kWh Tariff 4. This value is returned by the meter. It is the measure of how much energy has been measured (both Forward and Reverse) since the meter was installed within the Tariff 4 period. The Tariff 4 period is set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

- Display field name kWh_Tariff_4
- Display scale

Protocol Field | Tariff 1 upstream energy - E.UPSTREAM_T1 - Field ID 9

Tariff 1 upstream energy - E.UPSTREAM_T1 - Field ID 9

Technical Description of Tariff 1 upstream energy

Cumulative energy flowing upstream to the grid during the Tariff 1 time period.

- ▶ Type of field Tariff 1 upstream energy is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Tariff 1 upstream energy is read from the meter in units of 0.1 KW-hr
- Output Scale Tariff 1 upstream energy is displayed and stored in units of 1 KW-hr
- ▶ Field Range Tariff 1 upstream energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM METERING TNC.

Protocol Field II Tariff 1 upstream energy - E.UPSTREAM_T1 - Field ID 9

Display Description

Reverse kWh Tariff 1. This value is returned by the meter. It is the measure of how much energy has been measured going toward the grid since the meter was installed within the Tariff 1 period. The Tariff 1 period is set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

- Display field name Rev_kWh_Tariff_1
- Display scale

Protocol Field I Tariff 2 upstream energy - E.UPSTREAM_T2 - Field ID 10

Tariff 2 upstream energy - E.UPSTREAM_T2 - Field ID 10

Technical Description of Tariff 2 upstream energy

Cumulative energy flowing upstream to the grid during the Tariff 2 time period.

- ▶ Type of field Tariff 2 upstream energy is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Tariff 2 upstream energy is read from the meter in units of 0.1 KW-hr
- Output Scale Tariff 2 upstream energy is displayed and stored in units of 1 KW-hr
- ▶ Field Range Tariff 2 upstream energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Tariff 2 upstream energy - E.UPSTREAM_T2 - Field ID 10

Display Description

Reverse kWh Tariff 2. This value is returned by the meter. It is the measure of how much energy has been measured going toward the grid since the meter was installed within the Tariff 2 period. The Tariff 2 period is set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

- Display field name Rev_kWh_Tariff_2
- Display scale

EKM METERING INC.

Protocol Field I Tariff 3 upstream energy - E.UPSTREAM_T3 - Field ID 11

Tariff 3 upstream energy - E.UPSTREAM_T3 - Field ID 11

Technical Description of Tariff 3 upstream energy

Cumulative energy flowing upstream to the grid during the Tariff 3 time period.

- ▶ Type of field Tariff 3 upstream energy is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Tariff 3 upstream energy is read from the meter in units of 0.1 KW-hr
- Output Scale Tariff 3 upstream energy is displayed and stored in units of 1 KW-hr
- ▶ Field Range Tariff 3 upstream energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

EKM METERING INC.

Protocol Field II Tariff 3 upstream energy - E.UPSTREAM_T3 - Field ID 11

Display Description

Reverse kWh Tariff 3. This value is returned by the meter. It is the measure of how much energy has been measured going toward the grid since the meter was installed within the Tariff 3 period. The Tariff 3 period is set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

- Display field name Rev_kWh_Tariff_3
- Display scale

EKM METERING INC.

Protocol Field I Tariff 4 upstream energy - E.UPSTREAM_T4 - Field ID 12

Tariff 4 upstream energy - E.UPSTREAM_T4 - Field ID 12

Technical Description of Tariff 4 upstream energy

Cumulative energy flowing upstream to the grid during the Tariff 4 time period.

- ▶ Type of field Tariff 4 upstream energy is a Measurement of cumulative energy. (Kind "E")
- ▶ Input Scale Tariff 4 upstream energy is read from the meter in units of 0.1 KW-hr
- Output Scale Tariff 4 upstream energy is displayed and stored in units of 1 KW-hr
- ▶ Field Range Tariff 4 upstream energy as displayed and stored may have a value of 0 to 9999999.9
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Tariff 4 upstream energy - E.UPSTREAM_T4 - Field ID 12

Display Description

Reverse kWh Tariff 4. This value is returned by the meter. It is the measure of how much energy has been measured going toward the grid since the meter was installed within the Tariff 4 period. The Tariff 4 period is set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

- Display field name Rev_kWh_Tariff_4
- Display scale

Protocol Field I EKM OmniMeter v3 and above voltage field - V.OMNIV3 - Field ID 26925

EKM OmniMeter v3 and above voltage field - V.OMNIV3 - Field ID 26925

Technical Description of EKM OmniMeter v3 and above voltage field

- Type of field EKM OmniMeter v3 and above voltage field is a Measurement of RMS voltage. (Kind "V")
- **Direction of field** This field is read from the meter and not inserted into the output message. [IN]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 and above voltage field - V.OMNIV3 - Field ID 26925

EKM OmniMeter v3 and above voltage field - V.OMNIV3 - Field ID 26925

Technical Description of EKM OmniMeter v3 and above voltage field

- Type of field EKM OmniMeter v3 and above voltage field is a Measurement of RMS voltage. (Kind "V")
- **Direction of field** This field is read from the meter and not inserted into the output message. [IN]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 and above voltage field - V.OMNIV3 - Field ID 26925

EKM OmniMeter v3 and above voltage field - V.OMNIV3 - Field ID 26925

Technical Description of EKM OmniMeter v3 and above voltage field

- Type of field EKM OmniMeter v3 and above voltage field is a Measurement of RMS voltage. (Kind "V")
- **Direction of field** This field is read from the meter and not inserted into the output message. [IN]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 and above current field - I.OMNIV3 - Field ID 26926

EKM OmniMeter v3 and above current field - I.OMNIV3 - Field ID 26926

Technical Description of EKM OmniMeter v3 and above current field

- ▶ Type of field EKM OmniMeter v3 and above current field is a Measurement of RMS current. (Kind "I")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 5. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 and above current field - I.OMNIV3 - Field ID 26926

EKM OmniMeter v3 and above current field - I.OMNIV3 - Field ID 26926

Technical Description of EKM OmniMeter v3 and above current field

- ▶ Type of field EKM OmniMeter v3 and above current field is a Measurement of RMS current. (Kind "I")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 5. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 and above current field - I.OMNIV3 - Field ID 26926

EKM OmniMeter v3 and above current field - I.OMNIV3 - Field ID 26926

Technical Description of EKM OmniMeter v3 and above current field

- ▶ Type of field EKM OmniMeter v3 and above current field is a Measurement of RMS current. (Kind "I")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 5. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 7 character power field - P.OMNIV3 - Field ID 26929

EKM OmniMeter v3 7 character power field - P.OMNIV3 - Field ID 26929

- ▶ Type of field EKM OmniMeter v3 7 character power field is a Measurement of RMS power. (Kind "P")
- **Direction of field** This field is read from the meter and not inserted into the output message. [IN]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 7 character power field - P.OMNIV3 - Field ID 26929

EKM OmniMeter v3 7 character power field - P.OMNIV3 - Field ID 26929

- ▶ Type of field EKM OmniMeter v3 7 character power field is a Measurement of RMS power. (Kind "P")
- **Direction of field** This field is read from the meter and not inserted into the output message. [IN]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 7 character power field - P.OMNIV3 - Field ID 26929

EKM OmniMeter v3 7 character power field - P.OMNIV3 - Field ID 26929

- ▶ Type of field EKM OmniMeter v3 7 character power field is a Measurement of RMS power. (Kind "P")
- **Direction of field** This field is read from the meter and not inserted into the output message. [IN]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 7 character power field - P.OMNIV3 - Field ID 26929

EKM OmniMeter v3 7 character power field - P.OMNIV3 - Field ID 26929

- ▶ Type of field EKM OmniMeter v3 7 character power field is a Measurement of RMS power. (Kind "P")
- **Direction of field** This field is read from the meter and not inserted into the output message. [IN]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 7. [ASCII_NUMBER]

Protocol Field I EKM OmniMeter v3 and above power factor field - PF.OMNIV3 - Field ID 26931

EKM OmniMeter v3 and above power factor field - PF.OMNIV3 - Field ID 26931

Technical Description of EKM OmniMeter v3 and above power factor field

- Type of field EKM OmniMeter v3 and above power factor field is a Measurement of current load power factor. The load power factor is represented by a number between zero and 200. This number indicates an inductive load if less than 100, a capacitive load if greater than 100, and a purely resistive load if equal to 100. (Kind "PF")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A power factor as formatted by the EKM OmniMeter v3 and later meters of length 4. [OMNIV3_PF]

Protocol Field I EKM OmniMeter v3 and above power factor field - PF.OMNIV3 - Field ID 26931

EKM OmniMeter v3 and above power factor field - PF.OMNIV3 - Field ID 26931

Technical Description of EKM OmniMeter v3 and above power factor field

- Type of field EKM OmniMeter v3 and above power factor field is a Measurement of current load power factor. The load power factor is represented by a number between zero and 200. This number indicates an inductive load if less than 100, a capacitive load if greater than 100, and a purely resistive load if equal to 100. (Kind "PF")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A power factor as formatted by the EKM OmniMeter v3 and later meters of length 4. [OMNIV3_PF]

Protocol Field I EKM OmniMeter v3 and above power factor field - PF.OMNIV3 - Field ID 26931

EKM OmniMeter v3 and above power factor field - PF.OMNIV3 - Field ID 26931

Technical Description of EKM OmniMeter v3 and above power factor field

- Type of field EKM OmniMeter v3 and above power factor field is a Measurement of current load power factor. The load power factor is represented by a number between zero and 200. This number indicates an inductive load if less than 100, a capacitive load if greater than 100, and a purely resistive load if equal to 100. (Kind "PF")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A power factor as formatted by the EKM OmniMeter v3 and later meters of length 4. [OMNIV3_PF]

<u>EKM METERING INC.</u>

Protocol Field I Maximum power - P.MAX - Field ID 26

Maximum power - P.MAX - Field ID 26

Technical Description of Maximum power

The maximum RMS power flowing in either direction during the time period indicated by CHOICE.DEMAND_PERIOD and as reset at a period indicated by CHOICE.DEMAND_RESET_PERIOD.

- ▶ Type of field Maximum power is a Measurement of RMS power. (Kind "P")
- ▶ Input Scale Maximum power is read from the meter in units of 1 W
- Output Scale Maximum power is displayed and stored in units of 1 W
- Field Range Maximum power as displayed and stored may have a value of 0 to 99999999
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 8. [ASCII_NUMBER]

Protocol Field II Maximum power - P.MAX - Field ID 26

Display Description

Max Demand is a measure of the highest average peak watts. It is calculated on 15, 30, or 60 minute time periods by the meter. This time period can be set internally in the meter over RS485 using our EKM Dash software and a USB to RS485 converter. The Max Demand is cumulative. It can be reset.

- Display field name RMS_Watts_Max_Demand
- Display scale

<u>ekm metering Inc.</u>

Protocol Field I Maximum Demand Period - CHOICE.DEMAND_PERIOD - Field ID 27

Maximum Demand Period - CHOICE.DEMAND_PERIOD - Field ID 27

Technical Description of Maximum Demand Period

The time range which the reported maximum demand (P.MAX) was measured within.

- Type of field Maximum Demand Period is a A value which must be one of several choices. (Kind "CHOICE")
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 1. [ASCII_NUMBER]

Choice ID	Choice Name	Choice Description
0	OFF	The maximum demand (P.MAX) field contains the maximum power usage since
1	MONTHLY	The maximum demand (P.MAX) field contains the maximum power usage over
2	WEEKLY	The maximum demand (P.MAX) field contains the maximum power usage ov
3	DAILY	The maximum demand (P.MAX) field contains the maximum power usage ov
4	HOURLY	The maximum demand (P.MAX) field contains the maximum power usage ov

<u>EKM METERING INC.</u>

Protocol Field II Maximum Demand Period - CHOICE.DEMAND_PERIOD - Field ID 27

Display Description

Display field name Max_Demand_Period

EKM Metering Inc. – www.ekmmetering.com – info@ekmmetering.com – (831)425-737

Protocol Field I Pulse input 1 ratio - RATIO.P1 - Field ID 34

Pulse input 1 ratio - RATIO.P1 - Field ID 34

Technical Description of Pulse input 1 ratio

The ratio of pulses counted by pulse input 1 to the pulse count reported in COUNT.P1 .

- Type of field Pulse input 1 ratio is a A ratio between two values of the same dimension (Kind "RATIO")
- Input Scale Pulse input 1 ratio is read from the meter in units of DIMENSIONLESS
- Output Scale Pulse input 1 ratio is displayed and stored in units of DIMENSIONLESS
- Field Range Pulse input 1 ratio as displayed and stored may have a value of 0 to
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Display Description

- Display field name Pulse_Ratio_1
- Display scale

EKM Metering Inc. – www.ekmmetering.com – info@ekmmetering.com – (831)425-7371

Protocol Field I Pulse input 2 ratio - RATIO.P2 - Field ID 35

Pulse input 2 ratio - RATIO.P2 - Field ID 35

Technical Description of Pulse input 2 ratio

The ratio of pulses counted by pulse input 2 to the pulse count reported in COUNT.P2 .

- Type of field Pulse input 2 ratio is a A ratio between two values of the same dimension (Kind "RATIO")
- Input Scale Pulse input 2 ratio is read from the meter in units of DIMENSIONLESS
- Output Scale Pulse input 2 ratio is displayed and stored in units of DIMENSIONLESS
- Field Range Pulse input 2 ratio as displayed and stored may have a value of 0 to
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Display Description

- Display field name Pulse_Ratio_2
- Display scale

EKM Metering Inc. – www.ekmmetering.com – info@ekmmetering.com – (831)425-7371

Protocol Field I Pulse input 3 ratio - RATIO.P3 - Field ID 36

Pulse input 3 ratio - RATIO.P3 - Field ID 36

Technical Description of Pulse input 3 ratio

The ratio of pulses counted by pulse input 3 to the pulse count reported in COUNT.P3 .

- Type of field Pulse input 3 ratio is a A ratio between two values of the same dimension (Kind "RATIO")
- Input Scale Pulse input 3 ratio is read from the meter in units of DIMENSIONLESS
- Output Scale Pulse input 3 ratio is displayed and stored in units of DIMENSIONLESS
- Field Range Pulse input 3 ratio as displayed and stored may have a value of 0 to
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Display Description

- Display field name Pulse_Ratio_3
- Display scale

Protocol Field I Current transformer ratio - RATIO.CT - Field ID 29

Current transformer ratio - RATIO.CT - Field ID 29

Technical Description of Current transformer ratio

The ratio of current measured by the current transformer to CT current output in A / 26.6 mA.

- Type of field Current transformer ratio is a A ratio between two values of the same dimension (Kind "RATIO")
- ▶ Input Scale Current transformer ratio is read from the meter in units of DIMENSIONLESS
- Output Scale Current transformer ratio is displayed and stored in units of DIMENSIONLESS
- Field Range Current transformer ratio as displayed and stored may have a value of 0 to
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Display Description

- Display field name CT_Ratio
- Display scale

<u>EKM METERING INC.</u>

Protocol Field I Maximum demand reset period -CHOICE.DEMAND_RESET_PERIOD - Field ID 57

Maximum demand reset period - CHOICE.DEMAND_RESET_PERIOD - Field ID 57

Protocol Field II Maximum demand reset period -CHOICE.DEMAND_RESET_PERIOD - Field ID 57

Technical Description of Maximum demand reset period

The time period at which the reported maximum demand (P.MAX) is reset.

- Type of field Maximum demand reset period is a A value which must be one of several choices. (Kind "CHOICE")
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- ▶ Format of field An ASCII-encoded number preceded by leading zeroes of length 1. [ASCII_NUMBER]

Choice ID	Choice Name	Choice Description
0	OFF	The maximum demand (P.MAX) is never reset.
1	MONTHLY	The maximum demand (P.MAX) is reset monthly.
2	WEEKLY	The maximum demand (P.MAX) is reset weekly.
3	DAILY	The maximum demand (P.MAX) is reset daily.
4	HOURLY	The maximum demand (P.MAX) is reset hourly.

<u>EKM METERING INC.</u>

Protocol Field III Maximum demand reset period -CHOICE.DEMAND_RESET_PERIOD - Field ID 57

Display Description

The v4 Meter can be set to Reset the Max Demand register on a schedule. You can make this setting in the meter over RS485 using our EKM Dash software and a USB to RS485 converter.

Display field name Max_Demand_Rst

Protocol Field I - RATIO.CF - Field ID 67

- RATIO.CF - Field ID 67

Technical Description of

- Type of field is a A ratio between two values of the same dimension (Kind "RATIO")
- Input Scale is read from the meter in units of DIMENSIONLESS
- Output Scale is displayed and stored in units of DIMENSIONLESS
- Field Range as displayed and stored may have a value of 0 to
- Direction of field This field is read from the meter and inserted into the output message. [IN_THEN_GW]
- Format of field An ASCII-encoded number preceded by leading zeroes of length 4. [ASCII_NUMBER]

Display Description

- Display field name CF_Ratio
- Display scale

Protocol Field I EKM OmniMeter v4 response type B constant 1 - CONST.OMNIV4B_RESP_CONST_1 - Field ID 27048

EKM OmniMeter v4 response type B constant 1 -CONST.OMNIV4B_RESP_CONST_1 - Field ID 27048

- Type of field EKM OmniMeter v4 response type B constant 1 is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 10. [IGNORE]

Protocol Field I EKM OmniMeter v4 response type B constant 2 - CONST.OMNIV4B_RESP_CONST_2 - Field ID 27049

EKM OmniMeter v4 response type B constant 2 -CONST.OMNIV4B_RESP_CONST_2 - Field ID 27049

- Type of field EKM OmniMeter v4 response type B constant 2 is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 10. [IGNORE]

Protocol Field I EKM OmniMeter v4 response type B constant 3 - CONST.OMNIV4B_RESP_CONST_3 - Field ID 27050

EKM OmniMeter v4 response type B constant 3 -CONST.OMNIV4B_RESP_CONST_3 - Field ID 27050

- Type of field EKM OmniMeter v4 response type B constant 3 is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 10. [IGNORE]

Protocol Field I EKM OmniMeter v4 response type B constant 4 - CONST.OMNIV4B_RESP_CONST_4 - Field ID 27051

EKM OmniMeter v4 response type B constant 4 -CONST.OMNIV4B_RESP_CONST_4 - Field ID 27051

- Type of field EKM OmniMeter v4 response type B constant 4 is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 10. [IGNORE]

Protocol Field I EKM OmniMeter v4 response type B constant 5 - CONST.OMNIV4B_RESP_CONST_5 - Field ID 27052

EKM OmniMeter v4 response type B constant 5 -CONST.OMNIV4B_RESP_CONST_5 - Field ID 27052

- Type of field EKM OmniMeter v4 response type B constant 5 is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 10. [IGNORE]

Protocol Field I EKM OmniMeter v4 response type B constant 6 - CONST.OMNIV4B_RESP_CONST_6 - Field ID 27053

EKM OmniMeter v4 response type B constant 6 -CONST.OMNIV4B_RESP_CONST_6 - Field ID 27053

- Type of field EKM OmniMeter v4 response type B constant 6 is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 6. [IGNORE]
- Constant =30=30=30=30=30

Protocol Field I EKM OmniMeter v3 and above date and time field -DATETIME.OMNIV3 - Field ID 26937

EKM OmniMeter v3 and above date and time field - DATETIME.OMNIV3 - Field ID 26937

Technical Description of EKM OmniMeter v3 and above date and time field

- Type of field EKM OmniMeter v3 and above date and time field is a Date and time measured since 1Jan1970 UTC, without leap seconds (Kind "DATETIME")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A date as formatted by the EKM OmniMeter v3 and later meters of length 14. [OMNIV3_DATE]

Protocol Field I EKM OmniMeter v4 request type B indentifier -CONST.OMNIV4B_REQ_TYPE - Field ID 27054

EKM OmniMeter v4 request type B indentifier -CONST.OMNIV4B_REQ_TYPE - Field ID 27054

Technical Description of EKM OmniMeter v4 request type B indentifier

- Type of field EKM OmniMeter v4 request type B indentifier is a A constant or a list of constants. (Kind "CONST")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of verbatim words of length 2. [WORDS]
- **Constant** =30=31

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above response postamble -CONST.OMNIV3_RESP_POSTAMBLE - Field ID 26947

EKM OmniMeter v3 and above response postamble -CONST.OMNIV3_RESP_POSTAMBLE - Field ID 26947

Technical Description of EKM OmniMeter v3 and above response postamble

- Type of field EKM OmniMeter v3 and above response postamble is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A sequence of input words to ignore of length 4. [IGNORE]
- Constant =21=0d=0a=03

Protocol Field I End of EKM CRC14 calculation and check against computed value or generate computed value - PINSN.EKMCRC14_END - Field ID 26949

End of EKM CRC14 calculation and check against computed value or generate computed value - PINSN.EKMCRC14_END - Field ID 26949

Technical Description of End of EKM CRC14 calculation and check against computed value or generate computed value

- Type of field End of EKM CRC14 calculation and check against computed value or generate computed value is a Protocol instruction (Kind "PINSN")
- ▶ Direction of field This field is read from the meter and not inserted into the output message. [IN]
- Format of field A two word EKM CRC14 value and the EKM CRC14 check of the calculated value against the field as read from the meter of length 2. [EKMCRC14_END]

Protocol Field I EKM OmniMeter v4 delay before sending close string -INTERVAL.OMNIV4AB_CLOSE_DELAY - Field ID 27081

EKM OmniMeter v4 delay before sending close string -INTERVAL.OMNIV4AB_CLOSE_DELAY - Field ID 27081

Technical Description of EKM OmniMeter v4 delay before sending close string

- Type of field EKM OmniMeter v4 delay before sending close string is a An interval of time (Kind "INTERVAL")
- Direction of field This field does not read from or write to the meter. [NONE]
- Format of field A delay of length 200. [DELAY]

ekn metering finc.

Protocol Field I EKM OmniMeter v3 and above close string -CONST.OMNIV3_CLOSE_CONST - Field ID 26992

EKM OmniMeter v3 and above close string -CONST.OMNIV3_CLOSE_CONST - Field ID 26992

Technical Description of EKM OmniMeter v3 and above close string

- Type of field EKM OmniMeter v3 and above close string is a A constant or a list of constants. (Kind "CONST")
- Direction of field This field is written to the meter. [OUT]
- Format of field A sequence of input words to ignore of length 5. [IGNORE]
- Constant =01=42=30=03=75

JSON Schema

```
{
"-id": 2,
"title": "Meter model",
"description": "The model number as reported by the EKM OmniMeter v3 and above. (Kind \u0022ID\u0022
"type": "string",
"minLength": 2,
"maxLength": 2,
"maxLength": 2,
"media": {
"binaryEncoding": "quoted-printable"
}
```

Protocol instruction

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "WORDS",
  "CHOICE.PINSN_FIELD": "ID.MODEL",
  "CHOICE.PINSN_OUTPUT_FORMAT": "BINARY",
  "CONST.PINSN_LENGTH": 2
}
```

Schema ID.FWVER

JSON Schema

```
{
  "-id": 1,
  "-id": 1,
  "title": "Meter firmware version",
  "description": "The firmware version as reported by the EKM OmniMeter v3 and above. (Kind \u0022ID\u
"type": "string",
  "minLength": 1,
  "maxLength": 1,
  "media": {
  "binaryEncoding": "quoted-printable"
  }
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "WORDS",
  "CHOICE.PINSN_FIELD": "ID.FWVER",
  "CHOICE.PINSN_OUTPUT_FORMAT": "BINARY",
  "CONST.PINSN_LENGTH": 1,
  "CONST.PINSN_CONST": ["=15"]
}
```

EKINETERING TINC. Schema E.TOTAL

JSON Schema

```
{
"~id": 3,
"title": "Total energy",
"description": "Cumulative energy flowing in either direction. (Kind \u0022E\u0022 for \u0022Energy
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.TOTAL",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```


JSON Schema

```
{
"~id": 38,
"title": "Reactive energy",
"description": "Cumulative reactive energy measured in either direction through the meter. (Kind \u
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.REACTIVE_TOTAL",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKIN IN ETERING TINC. Schema E.UPSTREAM_TOTAL

JSON Schema

```
{
"~id": 8,
"title": "Total upstream energy",
"description": "Cumulative energy flowing upstream to the grid. (Kind \u0022E\u0022 for \u0022Energ
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_TOTAL",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKM METERING INC.

Schema E.L1

JSON Schema

```
{
"~id": 51,
"title": "Line 1 energy",
"description": "Cumulative energy flowing in either direction on line 1. (Kind \u0022E\u0022 for \u0
"type": "number",
"minimum": 0,
"maximum": 0,9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.L1",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKM METERING INC.

Schema E.L2

JSON Schema

```
{
"~id": 52,
"title": "Line 2 energy",
"description": "Cumulative energy flowing in either direction on line 2. (Kind \u0022E\u0022 for \u0
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.L2",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKM METERING INC.

Schema E.L3

JSON Schema

```
{
"~id": 53,
"title": "Line 3 energy",
"description": "Cumulative energy flowing in either direction on line 3. (Kind \u0022E\u0022 for \u0"
type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.L3",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKININETERING TINC. Schema E.UPSTREAM_L1

JSON Schema

```
{
"~id": 54,
"title": "Line 1 upstream energy",
"description": "Cumulative energy flowing upstream to the grid on line 1. (Kind \u0022E\u0022 for \u
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_L1",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKININETERING TINC. Schema E.UPSTREAM_L2

JSON Schema

```
{
"~id": 55,
"title": "Line 2 upstream energy",
"description": "Cumulative energy flowing upstream to the grid on line 2. (Kind \u0022E\u0022 for \u
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_L2",
   "CHOICE.PINSN_UOTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKININETERING TINC. Schema E.UPSTREAM_L3

JSON Schema

```
{
"~id": 56,
"title": "Line 3 upstream energy",
"description": "Cumulative energy flowing upstream to the grid on line 3. (Kind \u0022E\u0022 for \u
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_L3",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKIN METERING TINC. Schema E.SINCE_RESET

JSON Schema

```
{
"~id": 39,
"title": "Energy since reset",
"description": "Cumulative energy flowing in either direction since last reset of this field. (Kind
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.SINCE_RESET",
   "CHOICE.PINSN_UOTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

Schema E.UPSTREAM_SINCE_RESET

JSON Schema

```
{
"~id": 40,
"title": "Upstream energy since reset",
"description": "Cumulative energy flowing upstream to the grid since last reset of this field. (Kind
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_SINCE_RESET",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKIN METERING TINC. Schema V.L1

JSON Schema

```
{
"~id": 13,
"title": "Line 1 voltage",
"description": "The RMS voltage across line 1 and neutral. (Kind \u0022V\u0022 for \u0022Voltage\u0
"type": "number",
"minimum": 0,
"maximum": 999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "V.L1",
   "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 4,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```


JSON Schema

```
{
"~id": 14,
"title": "Line 2 voltage",
"description": "The RMS voltage across line 2 and neutral. (Kind \u0022V\u0022 for \u0022Voltage\u0
"type": "number",
"minimum": 0,
"maximum": 999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "V.L2",
   "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 4,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```


JSON Schema

```
{
"~id": 15,
"title": "Line 3 voltage",
"description": "The RMS voltage across line 3 and neutral. (Kind \u0022V\u0022 for \u0022Voltage\u0
"type": "number",
"minimum": 0,
"maximum": 999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "V.L3",
   "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 4,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKIMMETERING TINC. Schema I.L1

JSON Schema

```
{
"~id": 16,
"title": "Line 1 current",
"description": "The RMS current flowing in either direction through line 1. (Kind \u0022I\u0022 for
"type": "number",
"minimum": 0,
"maximum": 9999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMEER",
   "CHOICE.PINSN_DUTPUT_FORMAT": "DECIMAL",
   "CHOICE.PINSN_LENGTH": 5,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```


JSON Schema

```
{
"~id": 17,
"title": "Line 2 current",
"description": "The RMS current flowing in either direction through line 2. (Kind \u0022I\u0022 for
"type": "number",
"minimum": 0,
"maximum": 9999.9
}
```

```
{
    "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
    "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
    "CHOICE.PINSN_FIELD": "I.L2",
    "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
    "CONST.PINSN_LENGTH": 5,
    "CHOICE.PINSN_TRANSFORM": "SCALE",
    "CONST.PINSN_TRANSFORM_ARG": 1
}
```


JSON Schema

```
{
"~id": 18,
"title": "Line 3 current",
"description": "The RMS current flowing in either direction through line 3. (Kind \u0022I\u0022 for
"type": "number",
"minimum": 0,
"maximum": 9999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "I.L3",
   "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 5,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

Schema P.L1

JSON Schema

```
{
"*id": 19,
"title": "Line 1 power",
"description": "The RMS power flowing in either direction through line 1. (Kind \u0022P\u0022 for \u
"type": "number",
"minimum": 0,
"maximum": 9999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "P.L1",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 7
}
```

Schema P.L2

JSON Schema

```
{
"-id": 20,
"title": "Line 2 power",
"description": "The RMS power flowing in either direction through line 2. (Kind \u0022P\u0022 for \u
"type": "number",
"minimum": 0,
"maximum": 9999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "P.L2",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 7
}
```

EKININETERING TINC. Schema P.L3

JSON Schema

```
{
"-id": 21,
"title": "Line 3 power",
"description": "The RMS power flowing in either direction through line 3. (Kind \u0022P\u0022 for \u
"type": "number",
"minimum": 0,
"maximum": 9999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "P.L3",
  "CHOICE.PINSN_UTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 7
}
```

EKINETERING TINC. Schema P.TOTAL

JSON Schema

```
{
  "-id": 22,
  "title": "Total power",
  "description": "The RMS power flowing in either direction. (Kind \u0022P\u0022 for \u0022Instantame
  "type": "number",
  "minimum": 0,
  "maximum": 9999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "P.TOTAL",
  "CHOICE.PINSN_LENGTH": 7
}
```

EKINMETERING TINC. Schema PF.L1

JSON Schema

```
{
".id": 23,
"title": "Line 1 power factor",
"description": "The current load power factor measurement for line 1. (Kind \u0022PF\u0022 for \u002
"type": "number",
"minimum": 0,
"maximum": 200
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "OMNIV3_PF",
  "CHOICE.PINSN_FIELD": "PF.L1",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 4
}
```

Schema PF.L2

JSON Schema

```
{
".id": 24,
"title": "Line 2 power factor",
"description": "The current load power factor measurement for line 2. (Kind \u0022PF\u0022 for \u002
"type": "number",
"minimum": 0,
"maximum": 200
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "OMNIV3_PF",
  "CHOICE.PINSN_FIELD": "PF.L2",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 4
}
```

EKIN METERING TINC. Schema PF.L3

JSON Schema

```
{
".id": 25,
"title": "Line 3 power factor",
"description": "The current load power factor measurement for line 3. (Kind \u0022PF\u0022 for \u002
"type": "number",
"minimum": 0,
"maximum": 200
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "OMNIV3_PF",
  "CHOICE.PINSN_FIELD": "PF.L3",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 4
}
```

EKIMMETERING TINC. Schema P.REACTIVE_L1

JSON Schema

```
{
"-id": 41,
"title": "Line 1 reactive power",
"description": "The RMS reactive power flowing in either direction through line 1. (Kind \u0022P\u00
"type": "number",
"minimum": 0,
"maximum": 9999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "P.REACTIVE_L1",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 7
}
```

EKIN METERING TINC. Schema P.REACTIVE_L2

JSON Schema

```
{
"-id": 42,
"title": "Line 2 reactive power",
"description": "The RMS reactive power flowing in either direction through line 2. (Kind \u0022P\u00
"type": "number",
"minimum": 0,
"maximum": 9999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "P.REACTIVE_L2",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 7
}
```

EKIMMETERING TINC. Schema P.REACTIVE_L3

JSON Schema

```
{
"-id": 43,
"title": "Line 3 reactive power",
"description": "The RMS reactive power flowing in either direction through line 3. (Kind \u0022P\u00
"type": "number",
"minimum": 0,
"maximum": 9999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "P.REACTIVE_L3",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 7
}
```


JSON Schema

```
{
"-id": 44,
"title": "Total reactive power",
"description": "The RMS reactive power currently flowing in either direction. (Kind \u0022P\u0022 f
"type": "number",
"minimum": 0,
"maximum": 9999999
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "P.REACTIVE_TOTAL",
   "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 7
}
```

EKINETERING TINC. Schema FREQ.L1

JSON Schema

```
{
"~id": 47,
"title": "Line 1 frequency",
"description": "The frequency of AC power flowing through line 1. (Kind \u0022FREQ\u0022 for \u0022F
"type": "number",
"minimum": 0,
"maximum": 999.9
}
```

```
{
    "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
    "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
    "CHOICE.PINSN_FIELD": "FREQ.L1",
    "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
    "CONST.PINSN_LENGTH": 4
}
```

EKININETERING TINC. Schema COUNT.P1

JSON Schema

```
{
"~id": 31,
"title": "Pulse input 1 pulse count",
"description": "Cumulative pulse count for pulse input 1. The reported pulse count increments once p
"type": "number",
"minimum": 0,
"maximum": 99999999
}
```

```
{
    "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
    "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
    "CHOICE.PINSN_FIELD": "COUNT.P1",
    "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
    "CONST.PINSN_LENGTH": 8
}
```

EKINIMETERING TINC. Schema COUNT.P2

JSON Schema

```
{
"-id": 32,
"title": "Pulse input 2 pulse count",
"description": "Cumulative pulse count for pulse input 2. The reported pulse count increments once p
"type": "number",
"minimum": 0,
"maximum": 99999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "COUNT.P2",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 8
}
```

EKINIMETERING TINC. Schema COUNT.P3

JSON Schema

```
{
"~id": 33,
"title": "Pulse input 3 pulse count",
"description": "Cumulative pulse count for pulse input 3. The reported pulse count increments once p
"type": "number",
"minimum": 0,
"maximum": 99999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "COUNT.P3",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 8
}
```

EKIN INETERING TINC. Schema CHOICE.STATE_P1

JSON Schema

```
{
  "-id": 64,
  "-id": 64,
  "title": "Pulse input 1 state",
  "description": "The current state of pulse input 1. (Kind \u0022CHOICE\u0022 for \u0022Single choic
  "type": "string",
  "oneOf": [{
    "enum": ["OFF"],
    "-id": 0,
    "title": "Pulse input 1 low (open)."
    }, {
    "enum": ["ON"],
    "-id": 1,
    "title": "Pulse input 1 high (closed)."
}
```

Protocol instruction

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW_COMPOUND",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "COMPOUND.OMNIV4A_INPUT_STATE",
   "CONST.PINSN_LENGTH": 1,
```

EKIN INETERING TINC. Schema CHOICE.STATE_P2

JSON Schema

```
{
  "-id": 65,
  "-id": 65,
  "title": "Pulse input 2 state",
  "description": "The current state of pulse input 2. (Kind \u0022CHOICE\u0022 for \u0022Single choic
  "type": "string",
  "oneOf": [{
    "enum": ["OFF"],
    "-id": 0,
    "title": "Pulse input 2 low (open)."
    }, {
    "enum": ["ON"],
    "-id": 1,
    "title": "Pulse input 2 high (closed)."
}]
}
```

Protocol instruction

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW_COMPOUND",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "COMPOUND.OMNIV4A_INPUT_STATE",
   "CONST.PINSN_LENGTH": 1,
```

EKIN INETERING TINC. Schema CHOICE.STATE_P3

JSON Schema

```
{
  "-id": 66,
  "-id": 66,
  "title": "Pulse input 3 state",
  "description": "The current state of pulse input 3. (Kind \u0022CHOICE\u0022 for \u0022Single choic
  "type": "string",
  "oneOf": [{
    "enum": ["OFF"],
    "-id": 0,
    "title": "Pulse input 3 low (open)."
    }, {
    "enum": ["ON"],
    "-id": 1,
    "title": "Pulse input 3 high (closed)."
}]
}
```

Protocol instruction

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW_COMPOUND",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "COMPOUND.OMNIV4A_INPUT_STATE",
   "CONST.PINSN_LENGTH": 1,
```

EKIN INETERING TINC. Schema CHOICE.DIRECTION_L1

JSON Schema

```
{
  "-id": 61,
  "-id": 61,
  "title": "Line 1 power flow direction",
  "description": "The direction of power flowing through line 1. (Kind \u0022CHOICE\u0022 for \u0022S
  "type": "string",
  "oneOf": [{
  "enum": ["UDSTREAM"],
  "-id": 0,
  "title": "Power through L1 is currently flowing upstream towards the grid."
  }, {
  "enum": ["DOWNSTREAM"],
  "-id": 1,
  "title": "Power through L1 is currently flowing downstream from the grid."
  }]
}
```

Protocol instruction

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW_COMPOUND",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "COMPOUND.OMNIV4A_POWER_DIRECTION",
   "CONST.PINSN_LENGTH": 1,
```

Schema CHOICE.DIRECTION_L2

JSON Schema

```
{
"-id": 62,
"title": "Line 2 power flow direction",
"description": "The direction of power flowing through line 2. (Kind \u0022CHOICE\u0022 for \u0022S
"type": "string",
"oneOf": [{
  "enum": ["UPSTREAM"],
  "-id": 0,
  "title": "Power through L2 is currently flowing upstream towards the grid."
}, {
  "enum": ["DOWNSTREAM"],
  "-id": 1,
  "title": "Power through L2 is currently flowing downstream from the grid."
}]
```

Protocol instruction

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_CW_COMPOUND",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "COMPOUND.OMNIV4A_POWER_DIRECTION",
   "CONST.PINSN_LENGTH": 1,
```

Schema CHOICE.DIRECTION_L3

JSON Schema

```
{
  "-id": 63,
  "title": "Line 3 power flow direction",
  "description": "The direction of power flowing through line 3. (Kind \u0022CHOICE\u0022 for \u0022S
  "type": "string",
  "oneOf": [{
  "enum": ["UPSTREAM"],
  "-id": 0,
  "title": "Power through L3 is currently flowing upstream towards the grid."
  }, {
  "enum": ["DOWNSTREAM"],
  "-id": 1,
  "title": "Power through L3 is currently flowing downstream from the grid."
  }]
}
```

Protocol instruction

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW_COMPOUND",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "COMPOUND.OMNIV4A_POWER_DIRECTION",
   "CONST.PINSN_LENGTH": 1,
```

EKIN INETERING TINC. Schema CHOICE.STATE_SW1

JSON Schema

```
{
  "-id": 59,
  "title": "Output 1 state",
  "description": "The state of output 1. (Kind \u0022CHOICE\u0022 for \u0022Single choice\u0022: A va
  "type": "string",
  "oneOf": [{
  "enum": ["OFF"],
  "-id": 0,
  "title": "Output 1 off."
  }, {
  "enum": ["ON"],
  "-id": 1,
  "title": "Output 1 on."
  }]
}
```

Protocol instruction

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW_COMPOUND",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "COMPOUND.OMNIV4A_OUTPUT_STATE",
   "CONST.PINSN_LENGTH": 1,
```

EKIN INETERING TINC. Schema CHOICE.STATE_SW2

JSON Schema

```
{
"-id": 60,
"title": "Output 2 state",
"description": "The state of output 2. (Kind \u0022CHOICE\u0022 for \u0022Single choice\u0022: A va
"type": "string",
"oneOf": [{
    "enum": ["OFF"],
    "-id": 0,
    "title": "Output 2 off."
}, {
    "enum": ["ON"],
    "-id": 1,
    "title": "Output 2 on."
}]
}
```

Protocol instruction

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW_COMPOUND",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "COMPOUND.OMNIV4A_OUTPUT_STATE",
   "CONST.PINSN_LENGTH": 1,
```


Schema E. I

JSON Schema

```
{
"~id": 4,
"title": "Tariff 1 energy",
"description": "Cumulative energy flowing in either direction during the Tariff 1 time period. (Kind
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.T1",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKM METERING INC.

Schema E.T2

JSON Schema

```
{
"~id": 5,
"title": "Tariff 2 energy",
"description": "Cumulative energy flowing in either direction during the Tariff 2 time period. (Kine
"type": "number",
"minimum": 0,
"maximum": 99999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.T2",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKM METERING INC.

Schema E.T3

JSON Schema

```
{
  "~id": 6,
  "title": "Tariff 3 energy",
  "description": "Cumulative energy flowing in either direction during the Tariff 3 time period. (Kine
  "type": "number",
  "minimum": 0,
  "maximum": 0,
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.T3",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

ekm metering thc.

Schema E.T4

JSON Schema

```
{
"~id": 7,
"title": "Tariff 4 energy",
"description": "Cumulative energy flowing in either direction during the Tariff 4 time period. (Kine
"type": "number",
"minimum": 0,
"maximum": 0,
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.T4",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKININETERING TINC. Schema E.UPSTREAM_T1

JSON Schema

```
{
"~id": 9,
"title": "Tariff 1 upstream energy",
"description": "Cumulative energy flowing upstream to the grid during the Tariff 1 time period. (Kin
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_T1",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKININETERING TINC. Schema E.UPSTREAM_T2

JSON Schema

```
{
"~id": 10,
"title": "Tariff 2 upstream energy",
"description": "Cumulative energy flowing upstream to the grid during the Tariff 2 time period. (Kin
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_T2",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKIN IN ETCERING TINC. Schema E.UPSTREAM_T3

JSON Schema

```
{
"~id": 11,
"title": "Tariff 3 upstream energy",
"description": "Cumulative energy flowing upstream to the grid during the Tariff 3 time period. (Kin
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_T3",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKININETERING TINC. Schema E.UPSTREAM_T4

JSON Schema

```
{
"~id": 12,
"title": "Tariff 4 upstream energy",
"description": "Cumulative energy flowing upstream to the grid during the Tariff 4 time period. (Kin
"type": "number",
"minimum": 0,
"maximum": 9999999.9
}
```

```
{
   "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
   "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
   "CHOICE.PINSN_FIELD": "E.UPSTREAM_T4",
   "CHOICE.PINSN_UUTPUT_FORMAT": "DECIMAL",
   "CONST.PINSN_LENGTH": 8,
   "CHOICE.PINSN_TRANSFORM": "SCALE",
   "CHOICE.PINSN_TRANSFORM_FIELD": "VAR.OMNIV4A_E_SCALE",
   "CONST.PINSN_TRANSFORM_ARG": 1
}
```

EKININETERING TINC. Schema P.MAX

JSON Schema

```
{
"~id": 26,
"title": "Maximum power",
"description": "The maximum RMS power flowing in either direction during the time period indicated b
"type": "number",
"minimum": 0,
"maximum": 99999999
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "P.MAX",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 8
}
```

Schema CHOICE.DEMAND_PERIOD

JSON Schema

```
Ł
"~id": 27.
"title": "Maximum Demand Period",
"description": "The time range which the reported maximum demand (\u005chyperlink{P.MAX}{P.MAX}) wa
"type": "string".
"oneOf": [{
"enum": ["OFF"].
"~id": 0.
"title": "The maximum demand (\u005chyperlink{P.MAX} (P.MAX) field contains the maximum power usage
}. {
"enum": ["MONTHLY"],
"~id": 1,
"title": "The maximum demand (\u005chyperlink{P.MAX}{P.MAX}) field contains the maximum power usar
}, {
"enum": ["WEEKLY"].
"~id": 2.
"title": "The maximum demand (\u005chyperlink{P.MAX} (P.MAX) field contains the maximum power usage
}. {
"enum": ["DAILY"],
"~id": 3,
"title": "The maximum demand (\u005chyperlink{P.MAX}{P.MAX}) field contains the maximum power usar
}, {
"enum": ["HOURLY"],
```

EKIN METERING TINC. Schema RATIO.P1

JSON Schema

```
{
".id": 34,
"title": "Pulse input 1 ratio",
"description": "The ratio of pulses counted by pulse input 1 to the pulse count reported in \u005chyp
"type": "number",
"minimum": 0,
"maximum": ""
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "RATIO.P1",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 4
}
```

Schema RATIO.P2

JSON Schema

```
{
"-id": 35,
"title": "Pulse input 2 ratio",
"description": "The ratio of pulses counted by pulse input 2 to the pulse count reported in \u005chyp
"type": "number",
"minimum": 0,
"maximum": ""
}
```

```
{
  "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
  "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
  "CHOICE.PINSN_FIELD": "RATIO.P2",
  "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
  "CONST.PINSN_LENGTH": 4
}
```

EKIN METERING TINC. Schema RATIO.P3

JSON Schema

```
{
".id": 36,
"title": "Pulse input 3 ratio",
"description": "The ratio of pulses counted by pulse input 3 to the pulse count reported in \u005chyp
"type": "number",
"minimum": 0,
"maximum": ""
}
```

```
{
    "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
    "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
    "CHOICE.PINSN_FIELD": "RATIO.P3",
    "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
    "CONST.PINSN_LENGTH": 4
}
```

Schema RATIO.CT

JSON Schema

```
{
"-id": 29,
"title": "Current transformer ratio",
"description": "The ratio of current measured by the current transformer to CT current output in A
"type": "number",
"minimum": 0,
"maximum": ""
}
```

```
{
    "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
    "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
    "CHOICE.PINSN_FIELD": "RATIO.CT",
    "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
    "CONST.PINSN_LENGTH": 4
}
```

Schema CHOICE.DEMAND_RESET_PERIOD

JSON Schema

```
ſ
"~id": 57.
"title": "Maximum demand reset period",
"description": "The time period at which the reported maximum demand (\u005chyperlink{P.MAX}{P.MAX}
"type": "string".
"oneOf": [{
"enum": ["OFF"].
"~id": 0.
"title": "The maximum demand (\u005chyperlink{P.MAX}{P.MAX}) is never reset."
}. {
"enum": ["MONTHLY"],
"~id": 1,
"title": "The maximum demand (\u005chvperlink{P.MAX}{P.MAX}) is reset monthly."
}, {
"enum": ["WEEKLY"],
"~id": 2.
"title": "The maximum demand (\u005chyperlink{P.MAX}{P.MAX}) is reset weekly."
}. {
"enum": ["DAILY"],
"~id": 3,
"title": "The maximum demand (\u005chvperlink{P.MAX}{P.MAX}) is reset daily."
}, {
"enum": ["HOURLY"],
```

Schema RATIO.CF

JSON Schema

```
{
  "-id": 67,
  "title": "",
  "description": " (Kind \u0022RATIO\u0022 for \u0022Ratio\u0022: A ratio between two values of the se
  "type": "number",
  "minimum": 0,
  "maximum": ""
}
```

```
{
    "CHOICE.PINSN_DIRECTION": "IN_THEN_GW",
    "CHOICE.PINSN_FORMAT": "ASCII_NUMBER",
    "CHOICE.PINSN_FIELD": "RATIO.CF",
    "CHOICE.PINSN_OUTPUT_FORMAT": "DECIMAL",
    "CONST.PINSN_LENGTH": 4
}
```